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Note 

Solution of Ornstein-Zernike 
Integral Equations for Lattice Gases 

I. INTRODUCTION 

Thermodynamic and structural properties of fluids are routinely routinely studied 
by solving the Ornstein-Zernike equation for the radial distribution function 
employing an approximate closure such as the hypernetted chain (HNC) 
approximation or the Percus-Yevick approximation. For electrolyte solutions Cl] 
the HNC equations are particularly successful and the primitive model of charged 
hard spheres in a structureless medium is well understood. There is a solid state 
analogue of this electrolyte model, the coulomb lattice gas, which is of current 
interest in several problems of point defects in ionic solids. An extension of analytic 
methods from electrolyte theory [2], and numerical studies of integral equations 
[3,4] have both been used in attempts to understand the properties of systems 
exhibiting superionic conductivity [2,4], and other simpler systems [3]. We shall 
first outline the problems which have been previously found in solving integral 
equations on a lattice where we are concerned with lattice summations rather than 
integrations, and then outline a useful solution to the problem. 

For the electrolyte solution studies [5] an important time saving is obtained by 
using the fast Fourier transform (FFT) to calculate the convolution integral, and a 
simple Picard iteration procedure is used to solve the equations. The slow con- 
vergence of the iteration is a limiting factor [6]. The situation is poorer for the lat- 
tice gas since the Fourier transforms are 3-dimensional and the advantages of using 
the one dimensional FFT are lost. Routine use of Fourier transforms for related 
defect problems [7] convinces us that there is little gain in Fourier transformation 
in the present context. A recent advance in electrolyte solution studies [g] has 
greatly improved the convergence by coupling the Picard iteration with a New- 
ton-Raphson (NR) iteration on a smaller grid. A simplified version of this method 
has been used for lattice defect studies [3] with the summations performed in real 
space. Only very limited results were obtained because of poor convergence. Here 
we present a much more successful scheme using only the NR method at all points 
in which the convolution sums are evaluated using a table of lattice wiehgts. Taken 
together, these refinements greatly reduce the computer time and substantially 
increase the area of the phase diagram for which solutions can be obtained. 

In the next section we first outline the method used for the convolution lattice 
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summations and then describe its use to solve the HNC equations for a 2-com- 
ponent lattice gas of equal and opposite charges on an fee lattice. In the final sec- 
tion we describe calculations using parameters appropriate to a model of defects in 
AgCl. Sample results are presented and compared with previous calculations [3] in 
order to evaluate the relative performance of the method. 

II. METHOD 

For a l-component fluid the Ornstein-Zernike equation, 

together with an approximate expression for the direct correlation function, c(lrl), 
in terms of h( (r) ) and the pair potential, u( Irl ), gives an integral equation which 
may be solved for h(lrl)zg(lrl)- 1. Here, g(lrl) is the pair correlation function, 
p = N/V is the number density, and the integration is over the total volume V. 
Equation (1) applies to a lattice gas when r and r’ are restricted to be lattice vec- 
tors, the integration sign is interpreted as a summation over all vectors r‘ for a 
crystal of B lattice sites, and p is interpreted as a site fraction (N/B). The lattice vec- 
tors r and r’ can be zero; since two atoms cannot be assigned to the same site 
h( lrl = 0) = - 1. We consider only cubic-based lattices. 

We can rewrite Eq. (1) in a more convenient form. For any vector R which con- 
nects two sites which are fth nearest-neighbours we denote the distance IR( by rl, 
with r,, corresponding to R = 0. We will refer to the index 1 of r, as the shell number 
since each atom is in the Ith neighbour shell of the other. In Eq. (l), let jr1 = ri. To 
do the summation over r’ we first sum over all sites for which lr’( = rj and then 
repeat this for all possible different values of Ir’l, i.e., sum over all j. Let Wk(i,j) 
denote the number of sites encountered such that It - r’l = rk when we sum over all 
the vectors for which lr’) = rj. The OZ equation can then be written in the form 

h(ri) = C(li) + P C 1 h(rj) Wk(i, jjC(rk). 
j=O k 

(2) 

The weights wk(j,jj may be calculated separately and a suitable table of results 
incorporated in the program to solve the OZ equation. 

The calculation of the weights follows straightforwardly from the definition. For 
a given shell i, in Eq. (2), pick any convenient representative vector r of magnitude 
ri. Then for each shell j (j= 1, 2,..., n) generate all vectors r’ of magnitude r,, 
calculate the corresponding vectors r - r’, and sort them according to length to 
determine to which wktj, jj each contributes. The process is repeated for i = 1,2,..., n. 
Here n is the neighbour separation beyond which h(r) is assumed zero in solving 
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the OZ equation. There are two well-known points about the geometry of lattices 
[9] to note here. 

(i) Lattice vectors are conventionally written in the form 

r=l,a,+I,a,+l,a,, (3) 

where (a,, a*, a,) are basis vectors and (I,, 12, &) are integers. It is important to 
remember when calculating the weights that there may be several sets of 3 positive 
integers which, with their permutations and with sign changes, generate vectors of 
the same length, e.g. (4, 1, 1) and (3, 3, 0) in the fee lattice. 

(ii) It is more convenient, in computing terms, to tabulate the shell numbers 1 
rather than the actual distances rl, since one will wish to represent the correlation 
functions as l-dimensional arrays labelled by shell number. The relation between r, 
and 1 needs care. In calculating weights it is convenient to use dimensionless lengths 
!I defined by 

fl = (rJa)*/2, (4) 

where a is the lattice spacing. For the first few nonzero shell numbers I= 1, 2,..., 
corresponding to first neighbour separation, second neighbour separation,..., one 
has rr= 1. However, it sometimes happens that there are no neighbours at any 
separation r[ such that F[ defined by (4) is equal to a particular integer. The smallest 
integers Y, for which this occurs in the fee lattices are 14 and 30. This is called the 
phenomenon of “empty shells” in the literature [9]. In the storage and use of 
weights it is important to use the shell numbers 2, which is just the set of integers 
without gaps, rather than the reduced distances ?, which are convenient in 
calculating the weights. If this is not done the NR routine becomes unnecessarily 
complicated. Similar remarks apply to other cubic-based lattices [9]. 

TABLE I 

The Weights wk(,,,) for the fee Lattice, Indexed to Pairs of 
Shells as in Eq. (2). 

(i,j) 

(19 1) 
(192) 
(133) 
c&l) 
(2,2) 
cz3) 
(3,l) 
(3>2) 
(3>3) 

WW.,) k(i,.d 

L4, 2,4, 1 0, 1,2,3,4 
2,z 2 43,s 
4,2,4,4,4, 2,4 1,2,3,4, 5,6, 7 
4,4,4 1, 3, 5 
1,4, 1 f-44, 8 
4, 8, 64 1, 3, 7, 9 
2, 1, 2, 2,2, 1,2 L2, 3,4, 5, 6, 7 
1, 2, 2, 1 1, 3, 7, 9 
1, 2, 2, 2, 1,4,4, 0, L-z 3,4, 5, 7, 
LZZ2, 1 8, 9, 10, 11, 12 



502 HARDER AND ALLNATT 

As an illustration, Table I gives weights and shell numbers for the first three 
shells of the fee lattice. For the calculations detailed below the table contained 93 
shells. It is important to have the entries in the table in a suitable order, so that 
they can be accessed in sequence, hence keeping computation time to a minimum. 
The order used is illustrated in Table I. For the actual table the first 93 entries are 
for i = 1 with j= 1, Z,..., 93. These are followed by the corresponding entries for 
i = 2, 3,..., 93 with all values of j in each case. In this way the contributions to the 
sum overj in Eq. (2) are evaluated in the correct order without having to search for 
the correct entry in the table. 

In order to illustrate the main calculation we consider a simple model system. 
The two components, labelled 1 and 2, occupy an fee lattice in equal concentrations 
p (site fraction). The energy of interaction between pairs of particles is assumed to 
be coulombic, and such that two particles cannot occupy the same site: 

Ull(ri) = Uzz(ri) = - Liz = e’/Dr,, i = 1, 2,..., n 

u,,(O) = h*(O) = 40) = 00, (5) 

where D is the dielectric constant. It follows by symmetry that there are only two 
independent correlation functions which we denote by h,(r) and h,(r), where 

h,(r) = h,,(r) = &(r) and h,(r) - h,2(r) = h,,(r). (6) 

Using a similar notation for other functions the Ornstein-Zernike equations for the 
two component system can be written as follows 

Ylfri) =P C wk(z,j)Chl(rj) cl(rk) + j2trj) c2(r/c)l 
i.k 

Yz(ri)=P C Wk(i,,)[hl(rj) drk) + Mrj) C1(rk)ly 

i.k 

where 

y,(rJ = h,(ri) - CAri), cc=l,Z (8) 

(7) 

The hypernetted chain approximation, 

CAri) = expC - Ua(ri)lkB T+ y,(ri)l- y,(ri) - 1 

Mri) = expC - UJri)lkB T+ y,(ri)l- 1, (9) 

converts Eqs. (7) to two equations in two unknowns, y1 and y2. The equations can 
be solved by the NR method. Given a set of initial estimates yL1l(ri) which yield 
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new values yL21(ri) calculated from the right hand sides of Eqs. (7), then the set of 
new estimates r&‘l is given by 

Yi3’tri) = Y&“(‘i) - 1 1 (J-‘)ai,j#[Y$“(rj) - r~‘(rj)l, (10) 
fi= 1.2 j 

where the recipe for the Jacobian matrix is 

J,i.=6,,6,-ay[2’(r.)/ay~‘l(rj). a l (11) 

It is straightforward to differentiate equations (7) and obtain expressions for the 
derivatives, e.g., 

Jli,lj = dij- P C Wk(i,j){hl(rj) hl(rk) + Ch*trj) + ‘1 C1(rk)I’ (12) 
k 

Both the new values yL21(ri) and the elements J,i,pj are straightforward to compute 
using the table of weights. The NR iteration was terminated when l< 10e5, where 

5 = i 1 lYL3’(h) - YP’(rJlm + 2). (13) 
i=O cz= 1.2 

III. SAMPLE RESULTS AND DISCUSSION 

In this Section we present typical results for the coulomb lattice gas model 
described above. The dielectric constant and lattice spacing used correspond to 
AgCl and were the same as in an earlier study [3]. Silver chloride doped with 
divalent cations contains a lattice gas of cation vacancies and divalent cations on 
the fee silver sublattice. At separations greater than about three lattice spacings the 
defect interactions are coulombic, but the present model takes them as coulombic 
at all separations. The model plays the same role as is played by the model of 
charged hard spheres in a continuum in electrolyte theory; it is the simplest useful 
model. 

The calculated correlation functions may be used to calculate some of the ther- 
modynamic properties of the lattice gas directly. The following expressions give the 
activity coefficients [3], f=fi =f2, the compressibility xr of the lattice gas 
expressed as the reduced inverse compressibility S-’ = (2pk, TxT)-‘, and the con- 
figurational energy per point defect, E,.: 

lnf = p C 1 wi($m(ri) “tcttri) - ccz(ri)}, 

a=1,2 i 

1 I 
-1 

Sp’= 1 +p 1 CWih,(ri) 
a=1.2 i 

Ec/kBT=lBPf(T) C 1 wig,(ri)u,(ri)y 
a=1.2 i 

(14) 

SSl/59/l-I I 
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where wi is the number of lattice sites in shell i (and occurs in the previous 
tabulation of weights since w~(,,~) = wi), and 

f(T)=l+T =$ 
( ) 

(15) 

arises from the temperature dependence of the dielectric constant. A useful check on 
the quality of the solutions of the HNC equations is provided by the electrical 
neutrality and second moment conditions [ 1, 31, 

Ao= 1 + P 1 WiCh,(rj) - Mri)l, 
i 

A2 = 1 + (K~P/~) C wjrfiIhl(rj) - h2(ri)l, 

where K is the Debye-Hiickel screening constant, defined by ~~ = 4ne2p/Dk, Ta3. 
The moment defects A,, and A, would be zero for exact solutions of the HNC 
equations. 

We present results for the above quantities at 250” C for several values of p in 
Table II; results from the earlier study [3] are included for comparison. We note 
that in the present work the moment defects A,, and A, are smaller in nearly every 
case and for concentrations up to 0.05 the values compare favourably with dilute 

TABLE II 

Thermodynamic Results for the Lattice Gas Model with 
AgCl Parameters at 250°C for Various Concentrations p. 

P 

0.005 

0.01 

0.02 

0.03 

0.04 

0.05 

0.10 

Ao A2 -1nf 

0.019 0.079 1.660 
-0.088 - 1.625 1.694 

0.009 0.044 1.991 
-0.025 - 0.477 2.004 

0.001 0.014 2.332 
- 0.026 -0.013 2.334 

-0.001 -0.003 2.527 
- 0.005 -0.045 2.531 

-0.002 -0.018 2.659 
-0.006 - 0.058 2.665 

-0.003 -0.043 2.755 

-0.019 - 0.486 2.998 

s-’ -EcIksT 

0.604 3.286 

0.580 3.839 

0.566 4.415 

0.568 4.758 

0.577 5.002 

0.590 5.192 

0.693 5.787 

Note. At each p the first line refers to the present work and the second line to an earlier study [3]. 
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electrolyte solutions, for which values of do = 0.005 and A2 = 0.1 are acceptable. For 
p = 0.1, corresponding to l/5 of the sites occupied by defects, and for higher con- 
centrations the moment defects are larger; we have been unable to find information 
on them for fluids at comparable concentrations. We also note that the agreement 
of our lnfwith earlier values [3] is good; the slight difference at the lowest concen- 
tration is almost certainly due to very slow convergence in the earlier method. 

The superior quality of the results is accompanied by very substantial savings in 
computer time. The earlier study [3] adapted a method [8] for fluids; it used an 
NR refinement of the correlation functions for the shortest lattice spacings followed 
by a Picard iterative refinement at all separations. The process was dominated by 
the slow convergence of the Picard iterations, which essentially refined the tails of 
the correlation functions. In the present work we applied the NR technique at all 
separations. The disadvantage of the method is that it involves the inversion of 
larger matrices, of order n2, where n is the number of shells for which the h,(ri) are 
computed. This can lead to large demands on storage and CPU time but if storage 
is available then it is feasible when coupled with use of the table of weights method 
to carry out the lattice summations efficiently. It is important that the weights are 
calculated separately and are stored in a suitable order so that they can be accessed 
without having to search a table; this is much more efficient than the earlier method 
[3] for the convolution lattice summations. The gains in efficiency are illustrated by 
the results above which were obtained using a maximum of n = 93 shells, as in the 
earlier study by Allnatt and Allnatt [S]. They reported that 160&2000 iterations 
were required with a CPU time of about 1-30s per iteration. The present technique 
required l&30 iterations with a CPU time of 20-80s per iteration. 

Finally, the superior convergence of the NR technique has allowed us to examine 
a much wider range both of thermodynamic states and of defect models. For exam- 
ple, for the model used above we have obtained solutions up to concentrations of 
p = 0.4 at 200°C 250°C and 400°C whereas earlier studies were limited by poor 
convergence to p 6 0.05 and temperatures of 250°C and above. A number of new 
features appear in the new range, including highly structured correlation functions 
similar to those found in the charged hard sphere fluid [6] at comparable concen- 
trations. A few concentrations were studied to as low as 170°C; evidence for mul- 
tiple solutions arising from different starting points was found. This corresponds to 
region C of Larsen and Friedman [6] where the HNC approximation is unreliable. 
We have also been able to study a more realistic model of defects in AgCl which 
employs theoretical non-coulombic interaction energies up to and including the 
third neighbour separation and coulombic interactions at larger separations. The 
lack of smoothness in the variation of defect interaction energy with distance for 
this more realistic type of model was found in the earlier work to cause problems 
which are now much reduced. A full presentation of these results will be made in a 
future paper. 

In conclusion, we have presented a technique for solving Ornstein-Zernike 
integral equations for lattice gases which is simpler and more efficient than those 
employed earlier. It makes the range of calculations accessible for lattice gas models 
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much more comparable to that available for fluids and is proving valuable in the 
study of lattice defects in systems with coulombic interactions. 
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